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Abstract: In a recent paper [J. Am. Chem. Soc.2000, 122,2010], the authors explored variational principles
that help one understand chemical reactivity on the basis of the changes in electron density associated with a
chemical reaction. Here, similar methods are used to explore the effect changing the external potential has on
chemical reactivity. Four new indices are defined: (1) a potential energy surface that results from the second-
order truncation of the Taylor series in the external potential about some reference,Υ(R1,R2,...,RM); (2) the
stabilization energy for the equilibrium nuclear geometry (relative to some reference),¥; (3) the flexibility, or
“lability”, of the molecule at equilibrium,Λ; and (4) the proton hardness,Π, which performs a role in the
theory of Brönsted-Lowry acids and bases that is similar to the role of the chemical hardness in the theory
of Lewis acids and bases. Applications considered include the orientation of a molecule in an external electric
field, molecular association reactions, and reactions between Bro¨nsted-Lowry acids and bases.

I. Introduction

The abundance of chemical knowledge underscores the need
for incisive and inclusive tools for systematizing chemical data.
In recent years, much attention has been paid to the insights
density functional theory1,2 (DFT) can give into chemical
reactivity.3-7 DFT reactivity indices such as the chemical
potential,1,8 chemical hardness,9-11 and Fukui function12,13 are
useful for elucidating the principles that guide chemical reac-
tions.

In a recent paper,14 the authors introduced a “perturbative
perspective” on chemical reactivity. The interactions between
molecules and, more specifically, problems associated with
charge transfer were explored using functional Taylor series
truncated at second order and DFT’s fundamental variational
principles. For a given configuration of the atomic nuclei (fixed
external potential), a constrained minimization was performed,
wherein the total energy is minimized with respect to all
densities that have the appropriate number of electrons (or
chemical potential). This yields variational approaches to
quantities of computational and conceptual significance, notably

the hardness, softness, Fukui function, and local softness.15

These indices aid the understanding of the electronic rearrange-
ments that occur during the course of chemical reactions. The
hardness and its reciprocal, the softness, are global reactivity
indicators: the inherent reactivity of a chemical species is well-
described through Pearson’s hard/soft acid/base16-18 and maxi-
mum hardness19-29 principles. On the other hand, the Fukui
function and the local softness are local reactivity indices that
measure the reactivity of a molecular site.13-15,30

Such tools are most appropriate when the chemical reaction
under consideration can be described as a change in the
electronic structure of the molecule; reactions between Lewis
acids and Lewis bases are prototypical examples. And while,
in principle, every chemical reaction can be completely de-
scribed through changes in the electron density,F(r),31 it is
sometimes more useful to change, through a Legendre trans-
formation, the fundamental variables of the problem to the
external potential,V0(r), and either the number of electrons,N,
or the electronic chemical potential,µ.32-34 The electronic
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chemical potential is the negative of the Mulliken electronega-
tivity, and it represents the escaping tendency of electrons from
a molecular system.1,8,35 The external potential is the part of
the potential felt by electrons that is not due to other electrons
in the system. For an isolated molecule the external potential is
just the potential due to the atomic nuclei,

but the external potential may also include contributions from
external electric fields or neighboring molecules.

When the fundamental process driving a reaction is not a
change in electronic structure, but a change in the number,
location, or kinds of atomic nuclei, it is appropriate to describe
this change directly through changes in the external potential,
rather than indirectly through the proxy variable of the electron
density. Consider, for example, the transfer of a proton from a
Brönsted-Lowry acid to a Bro¨nsted-Lowry base:

While reaction 2 can be described through the resulting changes
in the appropriate molecular electron densities, the process is
most directly described as a change in external potential. The
most transparent conceptual tools for understanding such
reactions can be found by developing a theory of chemical
reactivity in which the external potential, not the electron
density, is the fundamental variable. That is, the most transparent
conceptual tools for understanding such reactions will be
associated with the electron-following, rather than the electron-
preceding, perspective on chemical reactivity.36 This strict
coupling between changes in nuclear positions and electron
density is most naturally presented within the adiabatic (e.g.,
Born-Oppenheimer) approximation; this approximation is
implicit throughout the remainder of the paper.

Using methods similar to those described in ref 14, the present
paper proposes several “external potential-based” indices for
describing chemical reactivity. In analogy to the previous paper,
we perform a constrained search: for a fixed number of
electrons or electronic chemical potential, we minimize the total
energy with respect to all external potentials associated with
suitable positions of the atomic nuclei (in particular, we do not
allow changes in the charges of the atomic nuclei). However,
unlike in ref 14, the results of which were clearly within the
exclusive purview of density functional theory, the problem of
finding the best way to place atomic centers in a molecule is
solved by finding the global minimum on a potential energy
surface, and hence is not a problem unique to density functional
theory. Accordingly, the theoretical insights of this paper are
introduced through consideration of exact potential energy
surfaces (section II). Motivated by a desire to find qualitative
information about chemical reactivity without computing sub-
stantial portions of the potential energy surface, we discuss how
to approach key reactivity indices from density functional theory
(section III). After extending these results to the grand canonical
ensemble (section IV), we give an overview of the description
of chemical reactivity provided by the results of ref 14 and the
present paper (section V).

II. Potential Energy Surfaces for Molecular Systems

A. Definition. This work centers upon the interpretation of
potential energy surfaces, so we start by describing the exact
potential energy surface for anM-atom,N-electron molecule.
Denoting the set of nuclear charges by{ZR}R)1

M and the set of
nuclear coordinates by{RR}R)1

M , the potential energy surface
for an isolated molecule is given by

whereVrep is the nuclear-nuclear repulsion energy,

andE is the electronic energy,

In eq 5, Ĥ(N,V0(r)) represents the electronic Hamiltonian
operator for the system in question:

For molecules that are subject to additional electric fields,
as imposed by either some apparatus or nearby molecules, the
external potential is no longer given by eq 1, and the nuclear-
nuclear repulsion energy is no longer given by eq 4. The forces
that affect electrons are largely electrostatic, and hence can be
expressed as forces exerted upon electrons by an effective
“external” charge distribution,Fn(r). The generalized nuclear-
nuclear repulsion energy is then given by

which, upon application of Poisson’s equation, can be written
as

In eqs 7 and 8, points wherer * r′ are excluded from the domain
of the integration, thereby avoiding self-repulsion contributions
from the atomic nuclei; eq 8 simplifies to eq 4 for isolated
molecules. From eqs 5 and 8, the potential energy surface for
a molecule is seen to be a function of the external potential
and the number of electrons,U[N,V0(r)].

Because the zero of energy is arbitrary, one may shift the
potential energy surface by a constant without affecting the
underlying physics. In particular, it is often helpful set the energy
of an appropriate reference state equal to zero, thereby defining
a shifted potential energy surface:

Many molecular properties may be obtained from a mol-
ecule’s shifted potential energy surface,U[N,V0(r)]. For instance,
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U[N,V0(r)] ≡ U[N,V0(r)] - U[N,V0
ref(r)] (9)
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the optimal nuclear configuration is obtained by finding the
global minimum of U[N,V0(r)] over the set of all external
potentials that may be obtained through rearrangement of the
atomic nuclei from the reference external potential,V0

ref(r). The
restriction on the external potentials that are to be considered
is key, for otherwise no minimum value ofU[N,V0(r)] exists.37

Since the variations of the external potential are restricted to
those that may be parametrized through the nuclear coordinates,
{RR}R)1

M , we may consider the potential energy surface to be a
function of the nuclear coordinates,U({RR}R)1

M ).
B. “Reduced” Potential Energy Surfaces.For large poly-

atomic molecules, the molecular potential energy surface,
U({RR}R)1

M ), becomes inconveniently complex. However, for
many molecular processes, one may, by choosing appropriate
nuclear coordinates, approximate a chemical process of interest
by considering some (frequently small) number of nuclear
coordinates,{XR}. That is, we can reduce the amount of
information contained inU({RR}R)1

M ) by holding certain linear
combinations of the{RR}R)1

M constant, thereby obtaining a
reduced potential energy surface, U(X1,X2,...), that depends only
on the coordinates most relevant to a given molecular process.
Viewed from a different perspective, while the full 3M-
dimensional potential energy surface,U({RR}R)1

M ), is found by
restricting the domain of the molecular potential functional,
U[N,V0(r)], to just those external potentials that are associated
with some rearrangement of the nuclei from the reference
external potential,U(X1,X2,...) ≡ U[N,V0(r)] represents the
restriction of the domain of the molecular potential functional
to those external potentials that are associated with certain
specific rearrangements of the nuclei from the reference external
potential, namely, those rearrangements parametrized through
the coordinatesX1, X2, ....

This highly specific reduction of the domain of the molecular
potential functional to just those external potentials that are most
relevant to a given process is best understood through specific
examples. In preparation for the examples, we divide the nuclear
coordinates into three subsets: a set of three coordinates,
denotedR, that specify the position of the molecule; a set of
two coordinates, denoted (θ,φ), that specify the orientation of
the molecule; and a set of 3N - 6 coordinates, ({Rij}), that
specify the relative positions of the molecular nuclei.38

C. Examples.Example 1.Finding the Optimum Molecular
Geometry. Suppose we want to find the optimum nuclear
configuration for a molecule in an isotropic and homogeneous
environment. In this instance, then, the energy is independent
of the position of the molecule, represented byR, and the
orientation of the molecule, represented by the angular coor-
dinates (θ,φ); that is, the energy depends only upon the relative
nuclear positions. This suggests that we consider the “reduced
potential energy surface”,Ugeometry({Rij}), which measures the
“stabilization energy” of the geometry ({Rij}) relative to the
reference geometry, ({Rij

ref}). The best placement for the
atomic nuclei is found by minimizingUgeometrywith respect to
the relative placement of the nuclei. From an alternative

perspective, we find the external potential associated with the
ground-state nuclear configuration by minimizingU[N,V0(r)]
with respect to the space of external potentials parametrized by
the coordinates ({Rij}).

Example 2.Finding the Orientation of a Molecule in an
Anisotropic Electric Field. In this instance, the molecular
energy is independent of the position of the molecule,R, but
not of its orientation, (θ,φ). The presence of an electric field
often changes the relative positions of the atomic nuclei, ({Rij}),
which seems to suggest that we must consider a reduced
potential surface that depends on 3(M - 1) variables. However,
for sufficiently weak fields, the relative nuclear positions in the
molecule often change little, and the dominant effect is the
reorientation of the molecule in the presence of the field.39 As
an approximation, then, we ignore the changes in the relative
nuclear positions and consider the reduced potential energy
surface,Uanisotropic(θ,φ), which measures the relative energies
of various molecular orientations. The best way to orient the
molecule in the electromagnetic field is found by minimizing
Uanisotropic(θ,φ) with respect to the orientation of the molecule,
or, equivalently, by minimizingU[N,V0(r)] with respect to the
changes in the reference external potential parametrized by (θ,φ).

Example 3. Finding the Position of a Molecule in an
Anisotropic, Inhomogeneous Electric Field (Such as, for
Example, a Solvent “Cage”).As the field is inhomogeneous,
the position of the molecule,R, is important; that is, the potential
energy surfaceU({RR}R)1

M ) no longer possesses translational
invariance. If, as in Example 2, we assume that the field causes
only minimal changes in the relative positions of the atomic
nuclei, we may consider the reduced potential energy surface,
Uinhomogeneous(R,θ,φ). The best position and orientation for the
molecule is found by minimizingUinhomogeneous(R,θ,φ) with
respect to rotations and translations of the molecule, or,
equivalently, by minimizingU[N,V0(r)] with respect to changes
in the reference external potential that can be achieved through
variation of the parameters (R,θ,φ).

Example 4.Molecular Association Reactions.Consider a
molecular association reaction

We wish to predict the relative orientation of molecule A relative
to that of molecule B in A-B. In general, finding the geometry
of anM-atom product molecule requires consideration of a (3M
- 6)-dimensional potential energy surface. However, when the
relative nuclear positions in A-B strongly resemble those in
the isolated fragments A and B, it is plausible to consider a
reduced potential energy surface parametrized by the relative
positions of fragment A and fragment B,UAB(R,θ,φ). That is,
we “clamp” fragment B at the origin,R ) 0, in some orientation
(θ0,φ0) and consider the molecular energy,UAB(R,θ,φ), when
fragment A is at the pointR with orientation (θ,φ). The best
way to combine A and B is found by minimizingUAB(R,θ,φ).
If we choose as reference states for A and B the isolated
molecular fragments, thenUAB(Rmin,θmin,φmin) represents the
molecular interaction energy and approximates the binding
energy for A-B.

This procedure requires computing the reduced potential
energy surface for the entire molecule, A-B. However, note
the similarity between the reduced potential energy surface in

(37) Consider what happens if one tries to minimize the energy of a
one-electron diatomic molecule without imposing a constraint on the external
potential. As the nuclear charge at one atomic center increases without
bound, the energy(E e -Z1

2/2 + Z1Z2/|(R1 - R2)|) decreases without
bound.

(38) For example, the position of the molecule can be represented by
that of the first atom (soR1 ) R), theθ ) 0 direction can be the direction
of the second atom from the first atom (soR2 ) (R2, θ ) 0, φ ) 0)), and
theφ ) 0 direction can be the direction of a third, noncollinear, atom (so
R3 ) (R3, θ3, φ ) 0)). This leaves 3N - 6 “internuclear” coordinates,
(R2,R3,θ3,R4,R5,...,RM), each of which may be measured relative to the
position and orientation of the first three atoms.

(39) When the “clamped nuclei” approximation is qualitatively incorrect,
one must make recourse to the full potential energy surface. However, if
the clamped nuclei approximation yields results that are qualitatively
acceptable but not quantitatively satisfactory, one might use the suggested
reduced potential energy surfaces for conceptual ease and then refine the
quantitative results through geometry optimization (Example 1).

A + B f A-B (10)
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this example and Example 3, wherein a molecule is positioned
inside an inhomogeneous, anisotropic electric field. This sug-
gests that we restate the problem posed in reaction 10 as
follows: What is the best way to position fragment A in the
inhomogeneous, anisotropic electric field generated by fragment
B?

Proceeding in this way, we regard the electrons in fragment
A as interacting with some “effective external potential”,
VB

eff(r), due to the cumulative effects of the electrons and nuclei
associated with fragment B. Likewise, we regard the electrons
of fragment B as interacting with some “effective external
potential”, VA

eff(r), due to the electrons and nuclei associated
with fragment A. This leads to the following question: What
is the effective external potential an electron in fragment A feels
due to the electrons and nuclei of fragment B? If the interaction
were only electrostatic, then the effective external potential due
to fragment B would be

where V0,B(r) is the external potential due to the nuclei in
fragment B (as given by eq 1) andFB(r) is the electron density
of fragment B. While the interaction between the electrons in
fragment A and the nuclei in fragment B is strictly electrostatic,
the electrons in fragments A and B are identical particles, and
hence are subject to the exclusion principle. Moreover, the
electrons in fragments A and B are correlated. Accordingly,
the suitability of the electrostatic description of the effective
external potential is uncertain. A more satisfactory description
may be obtained through examining the Kohn-Sham potential-
based charge density:

whereVB
K-S(r) is the Kohn-Sham effective potential of frag-

mentB,40

Since the first term inqB
eff(r) is due toV0,B(r), eliminating this

term yields the purely electronic charge,

whereqB
xc(r) is the exchange correlation charge of Go¨rling and

Liu, Ayers, and Parr.41,42 Because41-43

an electron in a Kohn-Sham system can be considered to
interactstrictly electrostatically(i.e., there are no correlation
or exchange effects) with the nuclei of the system andN - 1
“pseudoelectrons” with total electron densityqelectronic(r). We
might expect, then, that an electron outside fragment B interacts
strictly electrostatically withNB pseudoelectrons with electron
density [NB/(NB - 1)]qB

electronic(r). In this approximation, the

effective external potential due to fragment B is defined by

To obtain a different construction, recall that each electron
in fragment A is interacting electrostatically withNB pseudo-
electrons in fragment B. This suggests that one should use the
Kohn-Sham effective potential for the anion,VB-

K-S(r), as the
effective external potential for fragment B. Both this approxima-
tion and the approximation of eq 16 would include the effects
of “interfragment” electron exchange and correlation, albeit in
an approximate manner.

Given a satisfactory form for the “effective external poten-
tials” for fragments A and B, one then solves the Kohn-Sham
equations for the fragments:

These equations are coupled, and hence must be solved self-
consistently. From them one gets the fragment densities,FA(r)
andFB(r), and hence the molecular density,

Moreover, one can compute the electronic energies of the
fragments:

The total electronic molecular energy will be

where IAB is the molecular interaction energy, which can be
defined as44

Given an approximate exchange-correlation energy density
functional, the only term in eq 21 that remains unknown is

(40) Kohn, W.; Sham, L. J.Phys. ReV. 1965, 140, A1133.
(41) Liu, S. B.; Ayers, P. W.; Parr, R. G.J. Chem. Phys.1999, 111,

6197.
(42) Görling, A. Phys. ReV. Lett. 1999, 83, 5459.
(43) Ayers, P. W.; Levy, M.J. Chem. Phys., submitted. (44) Gordon, R. S.; Kim, Y. S.J. Chem. Phys.1972, 56, 3122.

VB
electrostatic(r) ≡ V0,B(r) + ∫ FB(r′)

|r - r′| dr′ (11)

qB
eff(r) ≡ -1

4π
∇2VB

K-S(r) (12)

VB
K-S(r) ≡ V0,B(r) + ∫ FB(r′)

|r - r′| dr′ + Vxc,B(r) (13)

qB
electronic(r) ≡ FB(r) + qB

xc(r) (14)

∫qB
electronic(r) dr ) NB - 1 (15)

VB
eff(r) ≡ V0,B(r) +

NB

NB - 1[∫ FB(r′)
|r - r′| dr′ + Vxc,B(r)] (16)

{[- ∇2

2
+ V0,A(r) + ∫ FA(r′)

|r - r′| dr′ + Vxc[FA;r] +

VB
eff[FB;r]]ψi,A(r) ) εi,Aψi,A(r)}

i)1

∞

{[- ∇2

2
+ V0,B(r) + ∫ FB(r′)

|r - r′| dr′ + Vxc[FB;r] +

VA
eff[FA;r]]ψi,B(r) ) εi,Bψi,B(r)}

i)1

∞

(17)

FAB(r) ≡ FA(r) + FB(r) (18)

EA ≡ Ts[FA] + ∫FA(r)V0,A(r) dr

+ 1
2∫∫ FA(r)FA(r′)

|r - r′| dr dr′ + Exc[FA]

EB ≡ Ts[FB] + ∫FB(r)V0,B(r) dr

+ 1
2∫∫ FB(r)FB(r′)

|r - r′| dr dr′ + Exc[FB] (19)

EAB ) EA + EB + IAB (20)

IAB ≡ Ts[FA + FB]

+ ∫(FA(r) + FB(r))(V0,A(r) + V0,B(r)) dr

+ 1
2∫∫ (FA(r) + FB(r))(FA(r′) + FB(r′))

|r - r′| dr dr′

+ Exc[FA + FB] - EA - EB (21)
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Ts[FA + FB], which could be computed, for example, by the
procedure of Zhao, Morrison, and Parr.45-47 However, the
procedure of Zhao, Morrison, and Parr is more computationally
demanding than a Kohn-Sham calculation performed on the
entire molecule, A-B, and so one desires alternative procedures.
As a first approximation, we might assume

thereby attaining

We expect eq 22 to be a satisfactory approximation only when
the fragments are well-separated, so that the Kohn-Sham
orbitals of the two fragments are almost orthogonal (otherwise,
eq 22 violates the Pauli exclusion principle)48 (Alternatively,
solving eqs 17 subject to the constraint that the Kohn-Sham
orbitals from the two fragments are orthogonal ensures that the
molecular description provided by eq 23 is consistent with the
Pauli exclusion principle.)

Finally, we discuss how to construct the reduced potential
energy surface,UAB(R,θ,φ). As before, we fix fragment B at
the origin in some orientation, (θ0,φ0). We then solve eqs 17
for various positions and orientations of fragment A and
computeEAB(R,θ,φ). The reduced potential energy surface
UAB(R,θ,φ), is obtained fromEAB(R,θ,φ) by adding the
nuclear-nuclear repulsion energy and subtracting the total
energy of the reference state, which we assume to be the isolated
molecular fragments.

Example 5.Bro1nsted-Lowry Acids and Bases.From the
defining reaction (eq 2), it is clear that a Bro¨nsted-Lowry base,
B, is a proton acceptor, while a Bro¨nsted-Lowry acid, A-H,
is a proton donor. Therefore, to assess the basicity of B, we
address the optimum way to add a proton to B. In many cases
(e.g., the ammonia molecule), the geometry of molecule B
changes little upon protonation. This suggests that we may
consider the reduced potential energy surface for H-B that is
parametrized by the position of the proton,R; that is, fixing
molecule B at the origin (R ) 0) in some reference orientation
(θ0,φ0), we consider the change in energy when a proton is
placed at the pointR, UBL-base(R). The place where B is
protonated corresponds to the point,Rmin, that minimizes
UBL-base(R). Moreover, by choosing the reference state to be
the system with the proton infinitely far fromB, we ensure that
-UBL-base(Rmin) represents the proton affinity. Accordingly, the
magnitude ofUBL-base(Rmin) reflects the basicity of B in the
gas phase. Proton affinities may also be used to provide
qualitative explanations for solution phase acid/base
chemistry.49-51

To find a reduced potential energy surface appropriate to
Brönsted-Lowry acids, we consider the effect of deprotonating
A-H. We may cancel the external potential due to a proton by
adding a unit negative point charge to the molecule at the
location of a proton,RH. Ignoring the rearrangement of A that
occurs after this change in the external potential, we consider
the value of the reduced potential energy surfaceUBL-acid(RH)
at positions corresponding to the placement of each hydrogen
in theBrönsted-Lowryacid,A-H.TheplacewhereUBL-acid(RH)
is minimum,RH

min, predicts which proton most readily dissoci-
ates from A, and the value ofUBL-acid(RH

min) represents this
proton’s dissociation energy. Moreover, gas-phase proton
transfer from A to B (reaction 2) is energetically favorable only
when the proton affinity of B is greater than the proton
dissociation energy for A-H, so that

The reactivity indicesUBL-base(R) andUBL-acid(R) are key
quantities and have applicability to systems other than Bro¨n-
sted-Lowry acids and bases. Consider thatUBL-base(R) repre-
sents the change in molecular energy from placing a positive
“test charge” of unit magnitude at the pointR, while UBL-acid(R)
represents the energy change from placing a negative “test
charge” at the pointR. If the test charge had infinitesimal
magnitude,UBL-base(R) and -UBL-acid(R) would both reflect
the electrostatic potential due to the electron density and nuclear
charges of the molecule.52-54 However, when the test charge
has the magnitude of the charge on the electron, the polarization
of the density induced by the point charge is important, and
hence UBL-base(R) and -UBL-acid(R) are no longer equal.
Because chemical reactions may be characterized through
interactions between “atomic” or “partial” charges whose
magnitude is on the order of the charge on the electron, we
expect that the energy changes due to adding a unit positive
charge, UBL-base(R), and adding a unit negative charge,
UBL-acid(R), at the pointR are appropriate tools for qualitative
descriptions of chemical reactivity.

D. Reactivity Indices Derived from Reduced Potential
Energy Surfaces.It is apparent from the foregoing examples
that the reduced potential energy surfaces,U(X), contain much
information about the reactivity preferences for a system. Hence,
it is useful to develop quantities that summarize important
features ofU(X). Of particular interest is the behavior ofU(X)
at and near its global minimum,Xmin. For instance, the value
of U(X) at its global minimum represents the stabilization energy
of the optimal geometry relative to the reference geometry.
U(Xmin), however, is typically negative, and hence small values
of U(Xmin) correspond to high stability. Accordingly, we define
the stability through55

(45) Zhao, Q.; Parr, R. G.Phys. ReV. A 1992, 46, 237.
(46) Zhao, Q.; Parr, R. G.J. Chem. Phys.1993, 98, 543.
(47) Zhao, Q.; Morrison, R. C.; Parr, R. G.Phys. ReV. A 1994, 50, 2138.
(48) Both the coupled Kohn-Sham equations (eqs 17) and the non-

additivity of fragment kinetic energies (eq 22) are explored in the
following: Nalewajski, R. F.Int. J. Quantum Chem.2000, 76, 252.

(49) Ritchie, C. D.Physical Organic Chemistry: The Fundamental
Concepts, 2nd ed.; Marcel Dekker: New York, 1990.

(50) Douglas, B. E.; McDaniel, D. H.Concepts and Models of Inorganic
Chemistry; Blaisdell, Waltham, MA, 1965.

(51) Huheey, J. E.; Keiter, E. A.; Keiter, R. L.Inorganic Chemistry:
Principles of Structure and ReactiVity, 4th ed.; Harper Collins: New York,
1993.

(52) Politzer, P.J. Chem. Phys.1980, 72, 3027.
(53) Politzer, P.J. Chem. Phys.1980, 73, 3264.
(54) Murray, J. S., Sen, K., Eds.Molecular Electrostatic Potentials:

Concepts and Applications; Theoretical and Computational Chemistry, Vol.
3; Elsevier: Amsterdam, 1996.

(55) As a mnemonic device, one may note thatX represents the
“excitation” energy required to change from the optimal nuclear configu-
ration to the reference configuration.

Ts[FA] + Ts[FB] ≈ Ts[FA + FB] (22)

EAB ≡ Ts[FA] + Ts[FB]

+ ∫(FA(r) + FB(r))(V0,A(r) + V0,B(r)) dr

+ 1
2∫∫ (FA(r) + FB(r))(FA(r′) + FB(r′))

|r - r′| dr dr′

+ Exc[FA + FB] (23)
UBL-acid

A (RH
min) + UBL-base

B (Rmin) < 0 (24)

X ≡ -U(Xmin)

) U[N,V0(X
ref;r)] - U[N,V0(Xmin;r)] (25)
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Applying eq 25 to Examples 1-5, we find that (with natural
choices for the reference states):56

1. Xgeometrymodels the atomization energy of a molecule.
2,3.XisotropicandXinhomogeneousmodel the energy stabilization

from repositioning a molecule in an electric field.
4. XAB models the bond dissociation energy for A-B.
5. XBL-basemodels the proton affinity of a Bro¨nsted-Lowry

base, andXBL-acid models the proton dissociation energy for a
Brönsted-Lowry acid.57 The physical significance of these
quantities indicates thatX is a key index for describing chemical
reactivity.

In addition to X, which reflects the stability of a system
relative to a reference configuration, we may wish to consider
the lability or “floppiness” of the molecule; that is, how “flat”
is the reduced potential energy surface nearXmin? Is the system
rigidly constrained to near-optimal geometries, or do fairly small
stimuli cause large conformational changes? These questions
may be answered by studying the Hessian matrix,

The eigenvalues of the Hessian matrix are the force constants
for displacements about the optimal orientation, and hence when
the trace of the Hessian matrix is small, the molecule is very
labile. This suggests a definition for thelability:

Here, the number of parameters inX (dim(X)) is a normalizing
factor, so that the lability is the reciprocal of an average force
constant for the system.58 Accordingly, when dim(X) ) 1 (as
for a diatomic molecule),L is simply the reciprocal of the force
constant in the directionX. More generally, the lability is related
to the number of different molecular configurations that are
accessible at low temperatures.

III. Perturbation Expansions for the Potential Energy
Surface

A. Functional Taylor Series in the External Potential.
Insofar as the potential energy surface measures the potential

energy relative to an appropriate reference state, perturbative
expansions about this reference state are appropriate for explor-
ing molecular potential energy surfaces. Since we wish to probe
how the molecular energy changes as the external potential
changes, we consider the functional Taylor series:

Shifting the zero of the potential energy surface has no effect
on the general form of the perturbation expansion; consequently,
we prefer the expression

If the external potential of the state of interest resembles that
of the reference state sufficiently closely, low-order truncations
of these functional Taylor series will be accurate.

B. Truncation of the Perturbation Expansion. To explore
the properties of this Taylor series, note that, sinceVrep[V0(r)]
(eq 8) is a quadratic functional ofV0(r), functional Taylor series
expansions ofVrep[V0(r)] truncate after the second-order term.
Hence, truncating the Taylor series at second order and
separating the nuclear-nuclear repulsion terms from the elec-
tronic energy terms yields

where∆Vrep[V0] ≡ Vrep[V0] - Vrep[V0
ref]. (In eq 30 and through

the remainder of the paper, second-order truncation of the Taylor
series is accompanied by changing the symbol for a variable to
a capital Greek letter (soU f Υ, X f ¥, andL f Λ).)

To continue further, we must evaluate the functional deriva-
tives of the energy. A detailed discussion of functional deriva-
tives and functional Taylor series is included both in ref 14
and in Appendix A of ref 1, and will not be repeated here. Here
it suffices to know that (δE/δV0(r))N]V0

ref may be interpreted as
the relative change in energy induced by a small increase59 in
V0(r) at the point r and that ∫{(δE/δV0(r))N]V0

ref(V0(r) -
V0

ref(r′))} dr represents the first-order change in the energy due
to changing the external potential fromV0

ref(r) to V0(r).

(56) Tables of accurate atomization energies, proton affinities, and other
relevant properties have been compiled by Pople and co-workers, see:
Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A.J. Chem.
Phys1991, 94, 7221. Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople,
J. A. J. Chem. Phys.1997, 106, 1063. Curtiss, L. A.; Raghavachari, K.;
Redfern, P. C.; Pople, J. A.J. Chem. Phys.2000, 112, 7374.

(57) Lohr, L. L. J. Phys. Chem.1984, 88, 3607.
(58) This definition of the lability is not unique. One could argue that

the lability of a molecule is characterized by its flexibility in the direction
in which it is most easily deformed, leading to the definition

L ≡ 1
min{φi}

where{φi}i)1
dim(X) are the eigenvalues of the Hessian matrix. Equation 27

reflects the “average” lability; by this definition, a molecule whose potential
energy surface has a “long, narrow valley” is not very labile since many
“near-optimal” nuclear configurations are energetically inaccessible. That
is, the definition of lability adopted in the text quantifies the “floppiness”
of the molecule, while the alternative given in this footnote quantifies the
“stretchiness” of the molecule when a force is applied in the direction of
the normal coordinate corresponding to the lowest fundamental frequency.

(59) In particular, the perturbation may be considered to be

lim
εf0+

εδ(r′ - r)

U[N,V0(r)] ) U[N,V0
ref(r)]

+ ∫ δU

δV0(r)]V0)V0
ref

(V0(r) - V0
ref(r)) dr

+ 1
2∫∫(V0(r′) - V0

ref(r′)) δ2
U

δV0(r′) δV0(r)]V0)V0
ref

× (V0(r) - V0
ref(r)) dr dr′ + ... (28)

U[N,V0(r)] ) ∫ δU
δV0(r)]V0

ref

(V0(r) - V0
ref(r)) dr

+ 1
2∫∫(V0(r′) - V0

ref(r′)) δ2U
δV0(r′) δV0(r)]V0

ref

× (V0(r) - V0
ref(r)) dr dr′ + ... (29)

Υ[N,V0(r)] ≡ ∆Vrep[V0]

+ ∫( δE
δV0(r))N

]V0
ref

(V0(r) - V0
ref(r)) dr

+ 1
2∫∫(V0(r′) - V0

ref(r′))( δ2E
δV0(r′) δV0(r))N

]
V0

ref

× (V0(r) - V0
ref(r)) dr dr′ (30)

Fij ≡ ∂
2U(X)

∂Xi ∂Xj
]

X)Xmin

) [∇∇U(X)]X)Xmin
(26)

L ≡ dim(X)

Tr{Fij}
(27)
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Functional derivatives may evaluated by perturbation theory.
For instance, consider the perturbed Hamiltonians,

Ĥε)0[N,V0(r)] corresponds to Hamiltonian of the reference
system, whileĤε)1[N,V0(r)] is the Hamiltonian for the “target”
of the perturbation expansion. Expanding the energy as a Taylor
series inε,

it follows that

For nondegenerate states, the Hellmann-Feynman theorem
indicates that

whereFk
ref(r) is the density for the reference state. Hence,1

The second functional derivative is defined to be the
functional derivative of the first functional derivative; hence1

From the perturbation theory of nondegenerate states, we have

where{Ψk(xl,...,xN)}k)0
∞ are the eigenfunctions of the reference

system,∫dsi denotes summation over the spin coordinatesi, and
xi denotes both the spatial coordinate,r i, and the spin coordinate,
si. Equation 37 shows that we may identify (δFk

ref(r)/δV0(r′))N

with the polarizability kernel of the reference system,1

When similar manipulations are performed for the higher order
functional derivatives, one obtains hyperpolarizability kernels
of successive orders. Inserting our explicit expressions for the
functional derivatives (eqs 35 and 38) into eq 30 gives a compact
expression for the shifted potential energy surface:

To justify the decision to truncate eq 29 at second order, we
examine the physical significance of each term in eq 39. The
first two terms in eq 39 represent the change in the electrostatic
energy of the system, including both the change in the self-
repulsion of the external potential and the change in the
interaction between the electrons and the charges contributing
to the external potential. For example, addition of a unit positive
point charge at the pointR,

and truncation of eq 39 after the first-order term in∆V0(r) yields
the molecular electrostatic potential,φ(R).

Electrostatic effects are not sufficient for explaining chemical
reactivity. As an example, consider the thiocyanate anion, SCN-,
which is a Lewis base. Both resonance effects and inductive
effects tend to concentrate electron density near the nitrogen
atom, and, as expected, the electrostatic potential is found to
be most negative (and hence most attractive to positive species
(e.g., a Lewis acids)) near the nitrogen atom. However, with
the exception of very hard Lewis acids, SCN- binds through
the sulfur atom.60 While the electrostatic potential directs the
Lewis acid to bind to the nitrogen atom, the electron density of
SCN- is most readily polarized near the sulfur center, and hence
the sulfur center is the favored binding site for polarizable
reagents (soft Lewis acids). A theory that successfully treats
ambidentate ligands such as SCN-, then, must include both
electrostatic effects (in order to successfully predict reactivity
with hard acids) and polarization (in order to successfully predict
reactivity with softer acids). The third term in eq 39 represents
the “linear response” of the density to the change in external
potential, consequently including the effects of density polariza-
tion. Accordingly, truncation of the functional Taylor series at
second order proVides a theory that accounts for both electro-
static effects and the polarization of the density due to the
change in external potential.

It is not easy to calculate hyperpolarizability tensors. While
the third-order and higher order terms in the Taylor series are
negligible when the reference state strongly resembles the target
state, the electric fields due to∆V0(r) are typically strong
(because of the small distances involved), and so, in general,
hyperpolarizability contributions to the energy may not be
neglected. However, since the hyperpolarizability terms, like
the linear polarizability term, reflect the deformation of the
density due to the change in external potential, these terms do
not represent effects qualitatively different from those already
included inΥ[N,V0(r)]; hence, truncation of the functional Taylor
series at second order can be useful for qualitative studies of
chemical reactivity. We emphasize, however, that the second-

(60) The proton is the prototypical hard Lewis acid. Consider, then, that
both HSCN and HNCS are stable species. SinceKa

HSCN/Ka
HNCS ) 660, we

find that, as expected for a very hard acid, HNCS is more stable that HSCN.
However, the fact that HSCN exists at all underscores the chemical
importance of electron density polarization effects.

Ĥε[N,V0(r)] ≡ Ĥ[N,V0
ref(r)] + ∑

i)1

N

ε(V0(r i) - V0
ref(r i)) (31)

E(1) ) E(0) + ∂E
∂ε]

ε)0
+ 1

2
∂

2E

∂ε
2]

ε)0
+ ... (32)

∫( ∂E
δV0(r))N

]V0
ref

(V0(r) - V0
ref(r)) dr ) ∂E

∂ε]
ε)0

(33)

∂E
∂ε ]ε)0

≡ ∫Fk
ref(r)(V0(r) - V0

ref(r)) dr (34)

( δE
δV0(r))N

]V0
ref

≡ Fk
ref(r) (35)

( δ2E
δV0(r′) δV0(r))N

]
V0

ref

) (δFk
ref(r)

δV0(r′))N

(36)

∂
2E

∂ε
2]

ε)0
) ∫∫(V0(r2) - V0

ref(r2))

× [2N2∑
j*k

{[∫‚‚‚∫Ψj
/(x1,...,xN)Ψk(x1,...,xN) ds2 dx1 dx3 ... dxN]

× [∫‚‚‚∫Ψk
/(x1,...,xN)Ψj(x1,...,xN) ds1 dx2 ... dxN]}/

(Ek - Ej)](V0(r1) - V0
ref(r1)) dr1 dr2 (37)

Pk
ref(r1,r2) ≡ 2N2∑

j*k

{[∫‚‚‚∫Ψj
/(x1,...,xN)

× Ψk(x1,...,xN) ds2 dx1 dx3 ... dxN]

× [∫‚‚‚∫Ψk
/(x1,...,xN)Ψj(x1,...,xN) ds1 dx2 ... dxN]}/

(Ek - Ej)

) (δFk
ref(r1)

δV0(r2) )
N

(38)

Υ[N,V0(r)] ≡ ∆Vrep[V0] + ∫Fk
ref(r)(V0(r) - V0

ref(r)) dr

+ 1
2∫∫(V0(r′) - V0

ref(r′))Pk
ref(r,r′)(V0(r) - V0

ref(r)) dr dr′ (39)

∆V0(r) ≡ V0(r) - V0
ref(r) ≡ - 1

|r - R| (40)
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order truncation of the Taylor series will probably not yield
quantitative accuracy for geometries that do not resemble the
reference geometry,V0

ref(r). One might remedy this situation by
truncating the perturbation series (eq 29) at higher order.
Alternatively, one could use the functional analogue of Taylor’s
series with remainder;61 for instance:62

Note that evaluating the “path integral” in eq 41 requires
computing the polarizability kernel for intermediate geom-
etries: V0

ref(r) + ε∆V0(r) (0 < ε < 1).
C. Descriptors for Chemical Reactivity from the Trun-

cated Taylor Series.GivenΥ[N,V0(r)], one may then construct
reduced potential energy surfaces by considering only those
portions ofΥ[N,V0(r)] that may be accessed through changes
in the parameters,X. We denote the resulting reduced potential
energy surface asΥ(X). The optimal configuration for the
molecule corresponds to the choice of parameters,Xmin, that
minimizesΥ(X). One may then compute the stability,

and the lability,

where, in analogy to eq 26, the Hessian for the reduced potential
energy surface is defined by

Equations 39, 42-44 extend the results from section II to the
reduced potential energy surfaces obtained through second-order
truncation of the functional Taylor series expansion about the
reference state. These quantities, then, can be used to explain
chemical reactivity in the way the exact quantities were used
in section IIC.

The reduced potential energy surfaces for Bro¨nsted-Lowry
acids and bases (Example 5) merit special attention. Recall that
ΥBL-base(R) represents the change in the molecular energy (to
within the error accrued through truncation of the Taylor series)
caused by adding a proton at the pointR. (The requisite change
in external potential is given by eq 40.) Accordingly,ΥBL-base(R)
is exactly the electrostatic potential,52-54 φ(R), plus a correction
that approximates the polarizing effect of the proton on the
density. Because it includes polarization effects,ΥBL-base(R)
represents a more appropriate reactivity index thanφ(R) for
ambidentate ligands and soft reagents.

The quantityΥBL-acid(R) is related to the change in molecular
energy induced by placing a negative point charge at the point
R, and is hence expected to possess utility similar to that of
ΥBL-base(R). In particular, we expectΥBL-acid(R) to be appropri-
ate to Brönsted-Lowry acids and the reactions of molecules

with anionic reagents. Similarly, we expectΥBL-base(R) to be
an appropriate index for describing Bro¨nsted-Lowry bases and
reactions of molecules with cationic reagents. (Here, a reagent
is regarded as anionic if the active site is negatively charged,
while a reagent is regarded as cationic if the active site has a
positive change.)

BecauseΥBL-base(R) andΥBL-acid(R) are obtained by adding
point charges to the system, these indices are most appropriate
for describing the reactivity of a molecule with respect to small,
unpolarizable reagents. That is,ΥBL-base(R) is particularly
appropriate to hard, cationic reagents, whileΥBL-acid(R) is
particularly appropriate to hard, anionic reagents. While many
cationic reagents are fairly hard, most anionic reagents are quite
soft. To describe the reactivity of a molecule with respect to
soft reagents, we replace the point charge in the description of
ΥBL-base(R) andΥBL-acid(R) with a “smeared” point charge,

whereσ approximates the size of the reagent. Analogous to eq
40, which represents the change in the external potential due to
a point charge, when using the smeared point charge of eq 45,
the change in external potential is given by

Substituting eq 46 into eq 39, we obtain a generalization of
ΥBL-base(R) and ΥBL-acid(R) that is more appropriate for soft
reagents, which we denoteΥBL-base

soft (R) andΥBL-acid
soft (R). In the

limit of infinitely small reagent size (σ f 0), ΥBL-base
soft (R) and

ΥBL-acid
soft (R) become equal toΥBL-base(R) andΥBL-acid(R).
D. Extension to Degenerate States.Note that eqs 35 and

38 hold not only for ground states, but for any nondegenerate
state. Hence, the developments of this section are appropriate
not only for reactions on ground-state potential energy surfaces,
but also for reactions on excited-state potential energy surfaces.

For degenerate states, different perturbations,δV(r) ≡ V0(r)
- V0

ref(r), affect the degeneracy in different ways. This physical
observation is reflected in the fact that the functional derivatives,
(δE/δV0(r))N and (δ2E/δV0(r′) δV0(r))N, no longer exist. However,
making use of the perturbation theory of degenerate states, one
may generalize the results from this section. For degenerate
states, however, the quantities (δE/δV0(r))N and (δ2E/δV0(r′)
δV0(r))N are supplanted by generalized forms for the functional
derivative,δEN[V0,δV] andδ2EN[V0,δV], wherein the differentials
depend not only upon the reference state (N,V0(r)), but also upon
the particular perturbation,δV(r), under consideration.63

IV. Grand Canonical Ensemble

For multicomponent systems, the indistinguishability of
electrons prevents one from assigning particular electrons to
an individual component, rendering it difficult to define the
number of electrons in a component,Nc. In analogy to classical
statistical mechanics, one performs a Legendre transformation,

(61) van Leeuwen, R.; Baerends, E. J.Phys. ReV. A 1995, 51, 170.
(62) Equation 41 follows directly from the first-order Taylor Series+

remainder form of eq 32 and the chain rule for functional derivatives.

(63) The functional derivatives considered in the text are Fre´chet
functional derivatives. The somewhat weaker concept of a Gaˆteaux
functional derivative (see eq 3 of ref 14) would be sufficient for the present
purposes, but it, like the Fre´chet derivative, does not exist for degenerate
states. The “generalized functional derivative” considered here is usually
referred to as a Gaˆteaux variation. More information on the various
definitions of functional derivatives may be found in the following: Sagan,
H. Introduction to the Calculus of Variations; Dover: New York, 1992;
Chapter 1.

Υ[N,V0(r)] ≡ ∆Vrep[V0] + ∫Fk
ref(r)∆V0(r) dr

+ ∫0

1
{(1 - ε)∫∫∆V0(r′)Pk

V0
ref(r)+ε∆V0(r) (r,r′)∆V0(r) dr dr′} dε

(41)

¥ ≡ -Υ(Xmin) (42)

Λ ≡ dim(X)

Tr{Φij}
(43)

Φij ≡ ∂
2Υ(X)

∂Xi ∂Xj
]

X)Xmin

) [∇∇Υ(X)]X)Xmin
(44)

n((R;r) ≡ ( 1

π3/2σ3
e-(|r-R|/σ)2

(45)

V0(r) - V0
ref(r) ≡ -∫n((R;r)

1
|r - R| dr (46)
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which shifts variables from the electron number to the electronic
chemical potential.32-34 The electronic chemical potential enters
eq 47 as a Lagrange multiplier, enforcing the constraint of
constant particle number, and hence is given by8

When the system is in its ground state,µ is constant throughout
the system, and hence the chemical potential of a component
of the system,µc ≡ µ, is easily defined. Accordingly, the
Legendre transformation from the canonical ensemble to the
grand canonical ensemble is especially useful for treating
systems which consist of multiple, strongly interacting compo-
nents. The canonical ensemble is most often appropriate for gas-
phase processes (where the number of electrons in the reactants
and products is equal), while the grand canonical ensemble is
often appropriate for solution-phase processes (where, in equi-
librium, the electronic chemical potentials of the reactants and
products both equal the electronic chemical potential of the
solvent).

We would like to develop results for the grand canonical
ensemble that are analogous to the results from sections II and
III. The results in sections II and III were derived subject to
the constraint of constant particle number, and hence, by
analogy, results for the grand canonical ensemble will be derived
subject to the constraint of constant chemical potential. This
leaves section II unchanged except for the replacement of the
electronic energy,E[N,V0(r)], with E[N,V0(r)] - µN. When
measuring the potential energy relative to some reference state
(eq 9), this change results in the additional term

where Nref is the number of particles associated with the
reference state.

The first substantial change comes in section III, where eq
30 is replaced by the analogous

In eq 50, we denote the truncated functional Taylor series
expansion of the reduced potential energy surface by
Υµ[µ,V0(r)], but the subscript may be omitted whenever there
is little chance of confusion with the constantN case.

Equations 30 and 50 differ only in the functional derivatives,
for while

the softness kernel,

is not always equal to the negative of the polarizability kernel
(eq 37),-P0

ref(r,r′). (However,sref(r,r′) ) -P0
ref(r,r′) at zero

temperature.64-66) Substitution of eqs 51 and 52 into eq 50 yields
a compact form for the shifted potential energy surface:

Equation 53 is analogous to eq 39. The definitions for the
stability, ¥, and the lability,Λ, in grand canonical ansatz are
analogous to their definitions in eqs 42 and 43.

Because the functional derivative ofE[N,V0(r)] with respect
to the external potential and the functional derivative of the
grand potentialΩ[µ,V0(r)] with respect to the external potential
both equal the electron density, the first-order truncations of
ΥN(X) (eq 39) andΥµ(X) (eq 53) are identical. Accordingly,
in both the canonical and the grand canonical ensembles, the
effect of changing the external potential is, to first order, strictly
electrostatic. As we may regards(r,r′) as a polarizability kernel
for a system at constant chemical potential, the second-order
terms in eqs 39 and 53 measure similar effects, namely, the
change in energy due to the rearrangement of the density that
occurs after a change in the external potential.

V. Discussion

A. Links between External Potential-Based and Electron
Density-Based Reactivity Descriptors.By considering how
the molecular energy changes as the external potential changes,
but the electron number (or chemical potential) is held constant,
we have derived a number of reactivity indices, chief among
them the diverse reduced potential energy surfaces,Υ(X), the
stability, ¥, and the lability,Λ. We may refer to these indices
as “external potential-based” reactivity indices, in contrast with
the usual reactivity indices of density functional theory,1,14which
we refer to as “electron density-based” indices. As mentioned
in the Introduction, external potential-based indices are most
appropriate for describing chemical reactions in which the
external potential changes but the number of electrons (or
chemical potential) changes little, if at all.

Using methods similar to those used here, in ref 14 electron
density-based reactivity indices were explored. Just as the best
way to change the external potential at constant electron number
(or chemical potential) is found by minimizing the molecular
energy with respect to the family of external potentials associ-
ated with the parametrizationX, the best way to increase or
decrease the number of electrons (or the chemical potential) is
found by minimizing the molecular energy with respect to the
family of electron densities that possess the appropriate number
of electrons (or chemical potential). These two variational
constructs yield the external potential-based and electron density-
based reactivity indices, respectively.

Starting with the work of Berkowitz and Parr,67 many
researchers have sought relationships between electron density-
based descriptors of chemical reactivity and changes in molec-
ular geometry. In particular, many authors have explored the
relationships between the potential energy surface for a reaction
and the chemical hardness, chemical potential, and polarizability
along the reaction path.68-70 The changes in molecular confor-

(64) Cohen, M. H.; Ganduglia-Pirovano, M. V.; Kudrnovsky´, J.J. Chem.
Phys.1995, 103, 3543.

(65) Cohen, M. H. InDensity Functional Theory IV: Theory of Chemical
ReactiVity; Nalewajski, R. F., Ed.; Springer: Berlin, 1996; pp 143-170.

(66) Ayers, P. W., submitted.
(67) Berkowitz, M.; Parr, R. G.J. Chem. Phys.1988, 88, 2554.
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Υµ[µ,V0(r)] ) ∆Vrep[V0] + ∫Fref(r)(V0(r) - V0
ref(r)) dr

- 1
2∫∫(V0(r′) - V0

ref(r′))sref(r,r′)(V0(r) - V0
ref(r)) dr dr′ (53)

Ω[µ,V0(r)] ≡ E[N,V0(r)] - µN (47)

µ ≡ (∂E[N,V0(r)]

∂N )
V0(r)

(48)

-µ(N - Nref) (49)

Υµ[µ,V0(r)] ) ∆Vrep[V0]

+ ∫( δΩ
δV0(r))µ]V0

ref

(V0(r) - V0
ref(r)) dr

+ 1
2∫∫(V0(r′) - V0

ref(r′))( δ2Ω
δV0(r′) δV0(r))µ

]
V0

ref

× (V0(r) - V0
ref(r)) dr dr′ (50)

( δΩ
δV0(r))µ]V0

ref

) Fref(r) ) ( δE
δV0(r))N

]V0
ref

(51)

sref(r,r′) ≡ -(δFref(r)
δV0(r′))µ

) -( δ2Ω
δV0(r′) δV0(r))µ

]
V0

ref

(52)
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mation due to ionization and electron capture may be predicted
using the nuclear Fukui functions.65,71 Similar results for
electronic excited states were derived by Ayers and Parr in the
context of the Grochala-Albrecht-Hoffmann rule.72,73Subsum-
ing all of these results is the general theory of “mapping
relations” between changes in electron density and changes in
molecular geometry.74-78

Recall that for a system with an integer numbers of particles
at zero temperature, derivatives of the energy with respect to
particle number do not exist; hence at zero temperature, each
electron density-based descriptor is replaced by two descriptors,
one in which the derivative is taken from above, and one in
which the derivative is taken from below.79 For instance,
corresponding to eq 48, one now has two chemical potentials,
one where the derivative is taken from above,

and one where the derivative is taken from below,

I and A denote the ionization potential and electron affinity,
respectively. Likewise, there are now two Fukui functions,

and

where FN(r) denotes the electron density for theN-electron
system with external potentialV0(r). At zero temperature, the
hardness,

is zero when the derivatives are taken from above or below
and infinite when a central difference formula is used. For this
reason, it is most useful to defineη with the “∆N ) 1” finite
difference approximation to eq 58:

The Fukui function from above,f +(r), represents the best
way to add an electron to a molecule, M, while the chemical
potential from above,µ+, represents the energy gained when

that electron is added. Accordingly, we expect that M reacts
most readily with Lewis bases (electron donors) wheref +(r) is
large and that the magnitude ofµ+ measures the propensity of
M to accept electrons. Similarly, M reacts most readily with
Lewis acids (electron acceptors) wheref -(r) is large, and a large
value for µ- (small negative value) indicates that M readily
donates electrons. In general, then, given a reaction between a
Lewis acid, A, and a Lewis base, B,

we observe that A and B bind together, wheref A
+(r) andf B

-(r)
are largest. The reaction 60 is energetically favorable when

We conclude that strong Lewis acids have small (large negative)
µA

+, while strong Lewis bases have large (small negative)µB
-.

Summarizing,f A
+(r) is large at the reactive sites of Lewis acids

and f -(r) is large at the reactive sites of Lewis bases.µ+

measures how badly a Lewis Acid “wants” additional electrons,
while µ- measures how willingly a Lewis base will donate
electrons.

The finite difference chemical hardness (eq 59),η, represents
how “choosey” a molecule is about whether it accepts or donates
electrons. Because the ionization potential of a molecule is
always greater than its electron affinity,η is always positive.
Recall that a molecule is a good Lewis base whenI is small,
and a good Lewis acid whenA is big. Accordingly, a molecule
is a good Lewis acidand a good Lewis base whenη is small.
That is, for a given acid strength (value ofA), softer Lewis
acids are better Lewis bases than harder Lewis acids. If one
considers that an electron-transfer reaction between two mol-
ecules, A and B, occurs when eitherIA - AB (electron transfer
from A to B) or IB - AA (electron transfer from B to A) is
greater than zero, it becomes apparent that soft acids and bases
react with a wider range of compounds than hard acids and bases
of similar strength. Ergo the “hardness implies stability”
maxim.19,28

Recalling that Bro¨nsted-Lowry acid/base theory is a special
case of Lewis acid/base theory, we expect that there exist
correspondences between the external potential-based indices
for Brönsted-Lowry acids and bases and the electron density-
based indices for Lewis acids and bases. These correspondences
are summarized in Table 1.ΥBL-acid(R) and f A

+(r) are similar
indices. Recall thatΥBL-acid(R) approximates the change in
molecular energy due to placing a negative point charge at the
pointR. Sincef A

+(r) is large in those regions of A that are most
conducive to stabilizing electrons, and since electrons are
negatively charged, we expect thatΥBL-acid(R) and f A

+(r) are
large in similar regions of the molecule. Similarly, corresponding
to f B

-(r), we haveΥBL-base(R). f B
-(r) is large in regions of B

where electrons are poorly stabilized by the external potential,
and we expect that it is exactly these locations where the addition
of a proton most effectively stabilizes the molecule. Accordingly,

(69) Toro-Labbe´, A. J. Phys. Chem. A1999, 103, 4398.
(70) Chattaraj, P. K.; Fuentealba, P.; Jaque, P.; Toro-Labbe´, A. J. Phys.

Chem. A1999, 103, 9307.
(71) Cohen, M. H.; Ganduglia-Pirovano, M. V.; Kudrnovsky´, J.J. Chem.

Phys.1994, 101, 8988.
(72) Grochala, W.; Albrecht, A.; Hoffmann, R.J. Phys. Chem. A2000,

104, 2195.
(73) Ayers, P. W.; Parr, R. G.J. Phys. Chem. A2000, 104, 2211.
(74) Baekelandt, B. G.; Janssens, G. O. A.; Toufar, H.; Mortier, W. J.;

Schoonheydt, R. A.; Nalwewajski, R. F.J. Phys. Chem.1995, 99, 9784.
(75) Nalewajski, R. F.Phys. Chem. Chem. Phys.1999, 1, 1037.
(76) Nalewajski, R. F.; Skora, O.J. Phys. Chem. A2000, 104, 5638.
(77) Nalewajski, R. F.Topics Catal.2000, 11/12, 469.
(78) Nalewajski, R. F.Comput. Chem.2000, 24, 243.
(79) A more detailed derivation of these results is found in the appendix

of ref 14.

µ+ ≡ (∂E[N,V0(r)]

∂N )
V0(r)

+

) -A (54)

µ- ≡ (∂E[N,V0(r)]

∂N )
V0(r)

-

) -I (55)

f +(r) ≡ (∂F(r)
∂N )

V0(r)

+

) ( δµ+

δV0(r))N

) FN+1(r) - FN(r) (56)

f -(r) ≡ (∂F(r)
∂N )

V0(r)

-

) ( δµ-

δV0(r))N

) FN(r) - FN-1(r) (57)

η ≡ (∂2E[N,V0(r)]

∂N2 )
V0(r)

(58)

η ) µ+ - µ- ) I - A (59)

Table 1. Correspondences between External Potential-Based and
Electron Density-Based Reactivity Indices

type of index

external
potential-based

electron
density-based

local reactivity ΥBL-acid(R) f + (r)
ΥBL-base(R) f - (r)

global stability ¥BL-acid µ+

¥BL-base µ-

selectivity Λ,Π η

A + B f A-B (60)

∆E ≈ µA
+ - µB

- ) IB - AA < 0 (61)
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we expectf B
-(r) and ΥBL-base(R) to frequently agree in their

predictions of molecular reactivity.
Corresponding to the global reactivity indices,µ+ and µ-,

are the Bro¨nsted-Lowry stabilities,

where PDE is the proton dissociation energy and PA is the
proton affinity. Note that, like the electron dissociation energy
(I) and the electron affinity (A), both the PDE and the PA are
nonnegative. Large values for the Bro¨nsted-Lowry stabilities
indicate strong acids and bases. By contrast, small values of
µ+ (large A) are associated with strong Lewis acids, and large
values ofµ- (smallI) are associated with strong Lewis bases.80

Note that the electron chemical potentials (eqs 54 and 55) and
the Brönsted-Lowry stabilities (eq 62) are related to finite
difference approximations to the energy derivatives with respect
to the number of electrons and protons, respectively. Lohr
exploited this similarity to define the protofelicity,

The protofelicity performs a role in the theory of proton-transfer
analogous to that of the electronegativity in the theory of electron
transfer.57

The lability does not correspond to any of these electron
density-based indices. The lability represents the local selectivity
of the site in a Bro¨nsted-Lowry acid or base and hence
measures the “decisiveness” of the local indices,ΥBL-acid(R)
andΥBL-base(R). To draw a connection to electron density-based
theory, Λ corresponds to how strongly peaked the Fukui
function is in regions of high reactivity.

The “external potential-based” analogue to the chemical
hardness is provided by theproton hardness:57

The proton hardness, like the chemical hardness, is nonnegative.
Also like the chemical hardness, for a given acid strength (so
that ¥BL-acid is fixed), better bases possess smaller values for
Π. Similarly, for a given base strength, better acids possess
smaller values forΠ.81 Hence, molecules with largeΠ are
“choosey” as to whether they act as acids or bases, while
molecules with smallΠ possess both acidic protons and basic
sites. This indicates that molecules with smallΠ are more
reactive than molecules with largeΠ, and hence the “hardness
implies stability” maxim applies not only to the electronic
hardness,η, but also the proton hardness,Π.

B. Concluding Remarks. To summarize, the external
potential-based description in this paper provides reactivity
indices appropriate to processes wherein the external potential

changes, but either the number of electrons or the chemical
potential remains constant. By contrast, the electron density-
based description of ref 14 and elsewhere1 provides reactivity
indices that are most appropriate for reactions, such as electron-
transfer reactions, in which the number of electrons or chemical
potential changes, while the external potential changes little.
Since any chemical process can be written as a sum of two
steps, one in which the electron number (or chemical potential)
changes but the external potential does not, and one in which
the external potential changes but the number of electrons (or
chemical potential) does not, the reactiVity indices introduced
in this paper, when combined with the already extant reactiVity
indices explored in the preVious paper, proVide a complete set
of reactiVity indices for understanding any ground-state chemi-
cal process.

Throughout ref 14, we considered changes in electron density
at constant external potential,V0(r). By contrast, throughout the
present paper, we have considered the effect changing the
external potential has on the electron density (the polarizability
terms in eqs 39 and 53 measure the way the electron density
“follows” changes in the external potential). One may reasonably
ask, then, about the form of a theory in which the external
potential,ω(r), and the density,F(r), are varied independently.
For this purpose, we define the molecular energy functional,

whereF[F] is the Hohenberg-Kohn functional. In both ref 14
and sections III and IV herein, the key mathematical result is
the second-order Taylor series expansion. Taking the Taylor
series expansion of eq 65, substituting in the definitions from
Table 1 of ref 14, and simplifying, we obtain

In particular, we note that because eq 65 is a linear functional
of w(r), all functional derivatives ofE[F,w] which are of greater
than first order inδw(r) vanish. Except for the∫F(r)(w(r) -
w0(r)) dr term, eq 66 is identical to eq 15 in ref 14. (This
similarity results from the following identity:E[F,w] - E[F0,w0]
≡ Eω0[F] - Ew0[F0] + ∫F(r)(w(r) - w0(r)) dr.)

Noting that the external potential-based indices of this paper
apply to both ground and excited states, it is reasonable to ask
whether one can obtain electron density-based indices for excited
states. In a series of papers, Chattaraj and Poddar have examined
the properties of electron density-based reactivity indices for
the lowest state of any given symmetry.82-84 Extending these
results to other excited states requires an alternative formulation
of density functional theory and will not be pursued here.85
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¥BL-acid ≈ XBL-acid ≡ -PDE

≡ E[H:A] - E[A:] ≈ (∂EH:A

∂NH
)-

¥BL-base≈ XBL-base≡ PA

≡ E[B:] - E[H:B] ≈ -(∂EB:

∂NH
)+

(62)

øP ≡ PDE+ PA
2

(63)

Π ≡ -(¥BL-acid + ¥BL-base)

≈ P ≡ PDE- PA ≈ ∂
2E

∂NH
2

(64)

E[F,w] ≡ F[F] + ∫F(r)w(r) dr (65)

E[F,w] ) E[F0,w0] + ∫F(r)(w(r) - w0(r)) dr

+ ∫{(µ[F] - V[F;r]) + w0(r)}(F(r) - F0(r)) dr

+ 1
2∫∫(F(r) - F0(r))η[F;r,r′](F(r′) - F0(r′)) dr dr′ + ...

(66)
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